EconPapers    
Economics at your fingertips  
 

Technical, financial, economic and environmental pre-feasibility study of geothermal power plants by RETScreen – Ecuador's case study

Diego Moya, Juan Paredes and Prasad Kaparaju

Renewable and Sustainable Energy Reviews, 2018, vol. 92, issue C, 628-637

Abstract: A technical, financial, economic and environmental analysis of geothermal power plant developments in the Ecuadorian context was analysed by RETScreen-International Geothermal Project Model. Three different scenarios were considered. Scenario I and II considered incentives of 132.1 USD/MWh for electricity generation and grants of 3 million USD. Scenario III considered the geothermal project with an electricity export price of 49.3 USD/MWh. Scenario III was further divided into IIIA and IIIB case studies. Scenario IIIA considered a 3 million USD grant while Scenario IIIB considered an income of 8.9 USD/MWh for selling heat in direct applications. Modelling results showed that binary power cycle was the most suitable geothermal technology to produce electricity along with aquaculture and greenhouse heating for direct use applications in all scenarios. Financial analyses showed that the debt payment would be 5.36 million USD/year under in Scenario I and III. The corresponding values for Scenario II was 7.06 million USD/year. Net Present Value was positive for all studied scenarios except for Scenario IIIA. The equity paybacks were 3.2, 3.7, 16 and 5.6 years for Scenario I, Scenario II, Scenario IIIA and Scenario IIIB, respectively. Overall, Scenario II was identified as the most feasible project due to positive NPV with short payback period. Interestingly, Scenario IIIB could become financially attractive by selling heat for direct applications. Direct applications, public incentives and clean funding mechanisms are essential for the success of geothermal energy projects in the Ecuadorian context. The total initial investment for a 22 MW geothermal power plant was 114.3 million USD (at 2017 costs). Economic analysis showed an annual savings of 24.3 million USD by avoiding fossil fuel electricity generation. More than 184,000 tCO2 eq. could be avoided annually. Thus, greenhouse emissions avoided by using geothermal energy would bring out environmental benefits and improve the socio-economic benefits in communities.

Keywords: Geothermal energy; Technical analysis; Economic analysis; Financial analysis; Direct uses; Geothermal power plant; RETScreen modelling (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118302478
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:92:y:2018:i:c:p:628-637

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2018.04.027

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:92:y:2018:i:c:p:628-637