EconPapers    
Economics at your fingertips  
 

A review of uncertainty analysis in building energy assessment

Wei Tian, Yeonsook Heo, Pieter de Wilde, Zhanyong Li, Da Yan, Cheol Soo Park, Xiaohang Feng and Godfried Augenbroe

Renewable and Sustainable Energy Reviews, 2018, vol. 93, issue C, 285-301

Abstract: Uncertainty analysis in building energy assessment has become an active research field because a number of factors influencing energy use in buildings are inherently uncertain. This paper provides a systematic review on the latest research progress of uncertainty analysis in building energy assessment from four perspectives: uncertainty data sources, forward and inverse methods, application of uncertainty analysis, and available software. First, this paper describes the data sources of uncertainty in building performance analysis to provide a firm foundation for specifying variations of uncertainty factors affecting building energy. The next two sections focus on the forward and inverse methods. Forward uncertainty analysis propagates input uncertainty through building energy models to obtain variations of energy use, whereas inverse uncertainty analysis infers unknown input factors through building energy models based on energy data and prior information. For forward analysis, three types of approaches (Monte Carlo, non-sampling, and non-probabilistic) are discussed to provide sufficient choices of uncertainty methods depending on the purpose and specific application of a building project. For inverse analysis, recent research has concentrated more on Bayesian computation because Bayesian inverse methods can make full use of prior information on unknown variables. Fourth, several applications of uncertainty analysis in building energy assessment are discussed, including building stock analysis, HVAC system sizing, variations of sensitivity indicators, and optimization under uncertainty. Moreover, the software for uncertainty analysis is described to provide flexible computational environments for implementing uncertainty methods described in this review. This paper concludes with the trends and recommendations for further research to provide more convenient and robust uncertainty analysis of building energy. Uncertainty analysis has been ready to become the mainstream approach in building energy assessment although a number of issues still need to be addressed.

Keywords: Building energy; Uncertainty analysis; Uncertainty propagation; Inverse problems; Bayesian computation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403211830368X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:93:y:2018:i:c:p:285-301

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2018-12-01
Handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:285-301