Performance of water gas shift reaction catalysts: A review
D.B. Pal,
R. Chand,
S.N. Upadhyay and
P.K. Mishra
Renewable and Sustainable Energy Reviews, 2018, vol. 93, issue C, 549-565
Abstract:
Human beings have been using fossil fuels for their energy needs since long. Reducing availability of these non-renewable energy sources due to increasing consumption and resultant adverse effects on the environment has led researchers to focus on renewable and cleaner energy alternatives. Hydrogen is one such promising option which can serve as a renewable and cleaner alternative to conventional fossil fuels. Water-gas shift (WGS) reaction is currently widely employed to produce hydrogen from fossil carbonaceous as well as renewable biomass feed-stocks. WGS reaction involves reaction between CO and water over a suitable catalyst to enrich the gaseous mixture with H2. Traditionally, iron-chromium (Fe-Cr) and copper-zinc (Cu-Zn) catalysts have been used to facilitate the reaction at high and low temperatures, respectively. But over the years, WGS reaction catalyst technology has advanced dramatically and has been suitably modified to assist the reaction even in the medium temperature range and achieve higher CO conversion. Most of the current research is focused on ceria (CeO2) based WGS catalysts because of their unique favorable properties. Furthermore, there have been an ever-increasing number of recent studies which deal with fabricating nano-structured catalysts for WGS reaction because of the advantages offered by nano-materials over conventional materials. This review gives a progressive account of the evolution of WGS catalysts over the years with focus on those that are currently being investigated for better performances.
Keywords: Hydrogen; High temperature catalysts; Low temperature catalysts; Nanomaterials; Carbon; Ceria & noble metal catalysts; Water-gas shift reaction (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118303411
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:93:y:2018:i:c:p:549-565
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2018.05.003
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().