A systematic review on CO2 capture with ionic liquids: Current status and future prospects
Mahsa Aghaie,
Nima Rezaei and
Sohrab Zendehboudi
Renewable and Sustainable Energy Reviews, 2018, vol. 96, issue C, 502-525
Abstract:
Global warming due to the emission of greenhouse gases, especially carbon dioxide (CO2), has a significant effect on the climate change and has become a widespread concern in the recent years. Carbon capture, utilization, and sequestration (CCUS) strategy appears to be effective in decreasing the carbon dioxide level in the atmosphere. Despite a great progress in this field, there are still major limitations in commercialized the CO2 capture methods that rely on absorption phenomena. High capital costs of for the CO2 capture, low absorption and desorption rates (which require large facilities), solvent losses due to evaporation, and the use of corrosive solvents are among main obstructions. Recently, CO2 capture with ionic liquids (ILs) has appreciably attracted researchers’ attention. The distinct properties of ILs such as negligible vapor pressure and their affinity to capture the CO2 molecules make them a feasible alternative for currently available solvents including, different amines.
Keywords: CO2 capture; Climate change; Absorption; Ionic liquids; Physical and thermodynamic properties (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118305100
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:96:y:2018:i:c:p:502-525
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2018.07.004
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().