EconPapers    
Economics at your fingertips  
 

Deep Learning for fault detection in wind turbines

Georg Helbing and Matthias Ritter

Renewable and Sustainable Energy Reviews, 2018, vol. 98, issue C, 189-198

Abstract: Condition monitoring in wind turbines aims at detecting incipient faults at an early stage to improve maintenance. Artificial neural networks are a tool from machine learning that is frequently used for this purpose. Deep Learning is a machine learning paradigm based on deep neural networks that has shown great success at various applications over recent years. In this paper, we review unsupervised and supervised applications of artificial neural networks and in particular of Deep Learning to condition monitoring in wind turbines. We find that – despite a promising performance of supervised methods – unsupervised approaches are prevalent in the literature. To explain this phenomenon, we discuss a range of issues related to obtaining labelled data sets for supervised training, namely quality and access as well as labelling and class imbalance of operational data. Furthermore, we find that the application of Deep Learning to SCADA data is impeded by their relatively low dimensionality, and we suggest ways of working with higher-dimensional SCADA data.

Keywords: Deep Learning; Artificial neural network; Fault detection; Condition monitoring; Wind turbine (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118306610
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:98:y:2018:i:c:p:189-198

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2018.09.012

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:rensus:v:98:y:2018:i:c:p:189-198