Machine learning methods for commercial vehicle wait time prediction at a border crossing
Sushant Sharma,
Dong Hun Kang,
Jose Rivera Montes de Oca and
Abhisek Mudgal
Research in Transportation Economics, 2021, vol. 89, issue C
Abstract:
Commercial Vehicles crossing the international land port of entries (LPOEs) go through multiple screenings/stops contributing to the long queues at the congested border crossings. Although delay measurement has become precise, there is still a lack of predictive performance measures for stakeholders’ meaningful use. Instantaneous performance measures are after-the-fact with limited use for most stakeholders in terms of pro-active decision making. Therefore, as part of this study, we investigated new data sources such as Light-Emitting Diode Detection and Ranging (LEDDAR) and Radio Frequency Identifiers (RFIDs) for calculating border crossings performance measures. Next, we developed a percentile-based outlier detection method for reducing noise in the big datasets. Then, we explored machine learning to predict short-term wait time at a US-Mexico border crossing using Gradient Boosting Regression (GBR) and Random Forest (RF) Regression methods. Finally, GBR and RF machine learning algorithm predictions were compared and evaluated, along with a hybrid algorithm. The results encourage combining more sophisticated predictive algorithms and prediction methods on datasets. The high variability in data is a key challenge for machine learning algorithms leading to non-reliable predictions. This research helps to understand the performance of the LPOEs better and predict the magnitude of the situations when the performance deteriorates.
Keywords: Machine learning; Prediction algorithm; Border crossing performance measures; Commercial vehicle port of entries (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0739885921000068
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:retrec:v:89:y:2021:i:c:s0739885921000068
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_2&version=01
DOI: 10.1016/j.retrec.2021.101034
Access Statistics for this article
Research in Transportation Economics is currently edited by M. Dresner
More articles in Research in Transportation Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().