Trading performance and market efficiency: Evidence from algorithmic trading
Sudhakara Reddy Syamala and
Kavita Wadhwa
Research in International Business and Finance, 2020, vol. 54, issue C
Abstract:
In India, National Stock Exchange directly identifies algorithmic trading participation. Algorithmic traders possess intraday market timing skills. Results are not motivated by extreme short-term signals or transitory price trading. Magnitude of market timing performance in cross-sectional group of traders shows that they earn profit across all the cases, and maximize while providing liquidity. Volume-weighted-average-price decomposition analysis reports algorithmic traders earn profits through intraday market timing performance for five-minute and one-minute intervals, and it is higher compared to short-term market timing performance across all trader groups. Order imbalance and price delay regressions show that algorithmic trading significantly improves price efficiency.
Keywords: Algorithmic trading; VWAP; Trading performance; Intraday trading (search for similar items in EconPapers)
JEL-codes: G1 G10 G18 G2 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0275531920304050
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:riibaf:v:54:y:2020:i:c:s0275531920304050
DOI: 10.1016/j.ribaf.2020.101283
Access Statistics for this article
Research in International Business and Finance is currently edited by T. Lagoarde Segot
More articles in Research in International Business and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().