EconPapers    
Economics at your fingertips  
 

No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure

Pedro Carmona, Aladdin Dwekat and Zeena Mardawi

Research in International Business and Finance, 2022, vol. 61, issue C

Abstract: This study opens the black boxes and fills the literature gap by showing how it is possible to fit a very precise Machine Learning model that is highly interpretable, by using a novel ML technique, Extreme Gradient Boosting (XGBoost), and applying new model interpretability improvements. In addition, we identify several significant indicators that could assist in predicting business financial distress. The data were collected from the Eikon database from a sample of 1760 French firms (1585 healthy and 175 failing) in 2018. Identifying the leading indicators of business failure is critical in assisting regulators, and for business managers to act expeditiously before a distressed business reaches crisis point. Our results reveal that higher levels of equity per employee, solvency, the current ratio, net profitability, and a sustainable return on investment are associated with a lower risk of business failure. In contrast, a higher number of employees leads to business failure.

Keywords: Business failure; Machine learning; XGBoost; Model interpretability (search for similar items in EconPapers)
JEL-codes: C C46 G32 G33 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S027553192200037X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:riibaf:v:61:y:2022:i:c:s027553192200037x

DOI: 10.1016/j.ribaf.2022.101649

Access Statistics for this article

Research in International Business and Finance is currently edited by T. Lagoarde Segot

More articles in Research in International Business and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:riibaf:v:61:y:2022:i:c:s027553192200037x