Machine learning for US cross-industry return predictability under information uncertainty
Haithem Awijen,
Younes Ben Zaied,
Béchir Ben Lahouel and
Foued Khlifi
Research in International Business and Finance, 2023, vol. 64, issue C
Abstract:
This paper investigates the association between industry information uncertainty and cross-industry return predictability using machine learning in a general predictive regression framework. We show that controlling for post-selection inference and performing multiple tests improves the in-sample predictive performance of cross-industry return predictability in industries characterized by high uncertainty. Ordinary least squares post-least absolute shrinkage and selection operator models incorporating lagged industry information uncertainty for the financial and commodity industries are critical to improving prediction performance. Furthermore, in-sample industry return forecasts establish heterogeneous predictability over US industries, in which excess returns are more predictable in sectors with medium or low uncertainty.
Keywords: Predictive regression; OLS post-LASSO; Post-selection inference; Industry-rotation portfolio (search for similar items in EconPapers)
JEL-codes: C22 C58 G11 G12 G14 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0275531923000193
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531923000193
DOI: 10.1016/j.ribaf.2023.101893
Access Statistics for this article
Research in International Business and Finance is currently edited by T. Lagoarde Segot
More articles in Research in International Business and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().