Entropic approximate learning for financial decision-making in the small data regime
Edoardo Vecchi,
Gabriele Berra,
Steffen Albrecht,
Patrick Gagliardini and
Illia Horenko
Research in International Business and Finance, 2023, vol. 65, issue C
Abstract:
Financial decision-making problems based on relatively few observations and several explanatory variables can be problematic for the common machine learning (ML) tools, since they cannot efficiently discriminate the relevant information. To investigate the challenges of this “small data” regime, we employ several state-of-the-art ML methods for predicting whether three selected stocks from the Swiss Market Index will outperform the market, by using, as classification features, a set of commonly used technical indicators. We show that the recently introduced entropic Scalable Probabilistic Approximation (eSPA) algorithm significantly surpasses its competitors in both prediction accuracy and computational cost. We then discuss the interpretability of the employed ML methods and suggest some statistically derived heuristics to select the most appropriate and parsimonious financial decision-making candidate model.
Keywords: Approximate learning; Entropic classification; Decision-making (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0275531923000843
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:riibaf:v:65:y:2023:i:c:s0275531923000843
DOI: 10.1016/j.ribaf.2023.101958
Access Statistics for this article
Research in International Business and Finance is currently edited by T. Lagoarde Segot
More articles in Research in International Business and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().