Spatial decomposition analysis of water intensity in China
Chenjun Zhang,
Yusi Wu and
Yu Yu
Socio-Economic Planning Sciences, 2020, vol. 69, issue C
Abstract:
The shortage of water resources has become a burning issue constraining China's sustained development with significant differences in water intensity among regions and provinces. Quantifying the driving effect of spatial differences in the country's water intensity is very important to the dual implementation actions of water resources and intensity in each region. Spatial analysis reveals the variations among regions, identifies contributing factors, and helps us to better understand the scope for improvement compared to temporal analysis. This paper constructs a Spatial Index Decomposition Analysis (S-IDA) model based on the conventional IDA model referenced in the literature and divides China into six regions according to The 13th Five-Year Plan of Water-Saving Society Construction. We mainly examine the following four parts. First, the driving factors of the spatial difference of water intensity in the six regions are decomposed into intensity effect and structure effect. Second, we measure three industrial differences of the intensity effect and the structure effect in the six regions. Third, we decompose the drivers of the spatial differences of water intensity for provinces within the six regions into the intensity effect and the structure effect. Fourth, we select the results in 2015 to point out the key task of reducing water intensity in the six regions and in all provinces of those regions. The results underscore that each region should formulate and implement a sound water resource policy with differentiation and relevance according to actual conditions and provide a quantitative basis and support system so that regions can learn from each other about specific water-saving measures. These findings provide an insightful understanding of the spatial difference of water intensity and also a quantifiable justification for making building-specific water resources policies, which are discussed at the end of the study.
Keywords: Water intensity; Spatial difference; Driving effect; LMDI (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012118301320
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:69:y:2020:i:c:s0038012118301320
DOI: 10.1016/j.seps.2019.01.002
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().