Reverse efficiency measures for environmental assessment in data envelopment analysis
Mohammad Afzalinejad
Socio-Economic Planning Sciences, 2020, vol. 70, issue C
Abstract:
Environmental issues are becoming more and more important in our everyday life. Data Envelopment Analysis (DEA) is a tool developed for measuring relative operational efficiency. DEA can also be employed to estimate environmental efficiency where undesirable outputs like greenhouse gases exist. The classical DEA method identifies best practices among a given empirical data set. In many situations, however, it is advantageous to determine the worst practices and perform efficiency evaluation by comparing DMUs with the full-inefficient frontier. This strategy requires that the conventional production possibility set is defined from a reverse perspective. In this paper, presence of both desirable and undesirable outputs is assumed and a methodological framework for performing an unbiased efficiency analysis is proposed. The reverse production possibility set is defined and new models are presented regarding the full-inefficient frontier. The operational, environmental and overall reverse efficiencies are studied. The important notion of weak disposability is discussed and the effects of this assumption on the proposed models are investigated. The capability of the proposed method is examined using data from a real-world application about paper production.
Keywords: Data envelopment analysis; Environmental efficiency; Undesirable output; Full-inefficient frontier; Double frontier (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S003801211930076X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:70:y:2020:i:c:s003801211930076x
DOI: 10.1016/j.seps.2019.100731
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().