Forecasting models for daily natural gas consumption considering periodic variations and demand segregation
Ergun Yukseltan,
Ahmet Yucekaya,
Ayse Humeyra Bilge and
Esra Agca Aktunc
Socio-Economic Planning Sciences, 2021, vol. 74, issue C
Abstract:
Due to expensive infrastructure and the difficulties in storage, supply conditions of natural gas are different from those of other traditional energy sources like petroleum or coal. To overcome these challenges, supplier countries require take-or-pay agreements for requested natural gas quantities. These contracts have many pre-clauses; even if they are not met due to low/high consumption or other external factors, buyers must completely fulfill them. A similar contract is then imposed on distributors and wholesale consumers. It is, thus, important for all parties to forecast their daily, monthly, and annual natural gas demand to minimize their risk. In this paper, a model consisting of a modulated expansion in Fourier series, supplemented by deviations from comfortable temperatures as a regressor is proposed for the forecast of monthly and weekly consumption over a one-year horizon. This model is supplemented by a day-ahead feedback mechanism for the forecast of daily consumption. The method is applied to the study of natural gas consumption for major residential areas in Turkey, on a yearly, monthly, weekly, and daily basis. It is shown that residential heating dominates winter consumption and masks all other variations. On the other hand, weekend and holiday effects are visible in summer consumption and provide an estimate for residential and industrial use. The advantage of the proposed method is the capability of long term projections, reflecting causality, and providing accurate forecasts even with minimal information.
Keywords: Time series analysis; Forecasting; Fourier series; Modulation; Feedback; Natural gas consumption (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012120300227
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:74:y:2021:i:c:s0038012120300227
DOI: 10.1016/j.seps.2020.100937
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().