GMM clustering for in-depth food accessibility pattern exploration and prediction model of food demand behavior
Rahul Srinivas Sucharitha and
Seokcheon Lee
Socio-Economic Planning Sciences, 2022, vol. 83, issue C
Abstract:
Understanding the dynamics of food banks' demand from food insecurity is essential in optimizing operational costs and equitable distribution of food, especially when demand is uncertain. Hence, Gaussian Mixture Model (GMM) clustering is selected to extract patterns. The novelty is that GMM clustering is applied to identify the possible causes of food insecurity in a given region, understanding the characteristics and structure of the food assistance network in a particular region, and the clustering result is further utilized to explore the patterns of uncertain food demand behavior and its significant importance in inventory management and redistribution of surplus food thereby developing a two-stage hybrid food demand estimation model. Data obtained from a food bank network in Cleveland, Ohio, is used, and the clusters developed are studied and visualized. The results reveal that this proposed framework can make an in-depth identification of food accessibility and assistance patterns and provides better prediction accuracies of the leveraged statistical and machine learning algorithms by utilizing the GMM clustering results. Also, implementing the proposed framework for case studies based on different levels of planning led to practical results with remarkable ease and comfort intended for the respective planning team.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012122001410
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:83:y:2022:i:c:s0038012122001410
DOI: 10.1016/j.seps.2022.101351
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().