EconPapers    
Economics at your fingertips  
 

Machine Learning Classification Model Comparison

Paolo Giudici, Alex Gramegna and Emanuela Raffinetti

Socio-Economic Planning Sciences, 2023, vol. 87, issue PB

Abstract: Machine learning models are boosting Artificial Intelligence applications in many domains, such as automotive, finance and health care. This is mainly due to their advantage, in terms of predictive accuracy, with respect to classic statistical models. However, machine learning models are much less explainable: less transparent, less interpretable. This paper proposes to improve machine learning models, by proposing a model selection methodology, based on Lorenz Zonoids, which allows to compare them in terms of predictive accuracy significant gains, leading to a selected model which maintains accuracy while improving explainability. We illustrate our proposal by means of simulated datasets and of a real credit scoring problem. The analysis of the former shows that the proposal improves alternative methods, based on the AUROC. The analysis of the latter shows that the proposal leads to models made up of two/three relevant variables that measure the profitability and the financial leverage of the companies asking for credit.

Keywords: Lorenz Zonoids; Model selection; Predictive accuracy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012123000605
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:87:y:2023:i:pb:s0038012123000605

DOI: 10.1016/j.seps.2023.101560

Access Statistics for this article

Socio-Economic Planning Sciences is currently edited by Barnett R. Parker

More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:soceps:v:87:y:2023:i:pb:s0038012123000605