Evaluating the household-level climate-electricity nexus across three cities through statistical learning techniques
Simon Pezalla and
Renee Obringer
Socio-Economic Planning Sciences, 2023, vol. 89, issue C
Abstract:
As the climate crisis intensifies, rising temperatures and increased frequency of extreme events are likely to strain the electricity system. This will be particularly disastrous if the grid is unprepared for the climate-induced shifts in electricity demand that will result from increased temperatures. Recently, the use of data-driven modeling has emerged as a way to predict these climate-induced changes in electricity demand, however, much of the work has focused on entire sectors or regions. Here, we focus on the impact of climatic variables on hourly household electricity use for air conditioning. Our goal was to determine the best model for predicting the air conditioning use based on climate variables, as well as use that model to extract insights related to the household-level climate-electricity nexus. Using smart meter data from three US cities (Austin, Texas, Ithaca, New York, and San Diego, California), we tested seven different models of varying complexity. Ultimately, Bayesian additive regression trees (BART) was selected as the best model across all three cities (NRMSE ranged between 0.085 and 0.250). Additionally, we found that while the majority of the climate variables were important, relative humidity was the most important variable in each city. Given that air conditioning tends to drive non-base electricity demand in the summer, understanding these nuances in the climate-electricity nexus as it applies to air conditioning is critical for building a resilient grid.
Keywords: Household electricity use; Statistical learning theory; Smart meter data; Multi-city analysis; Climate impacts (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012123001763
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:89:y:2023:i:c:s0038012123001763
DOI: 10.1016/j.seps.2023.101664
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().