Using machine learning for NEETs and sustainability studies: Determining best machine learning algorithms
Muhammet Berigel,
Gizem Dilan Boztaş,
Antonella Rocca and
Gabriela Neagu
Socio-Economic Planning Sciences, 2024, vol. 94, issue C
Abstract:
In this study, we apply and compare different algorithms from machine learning to describe and predict NEET rates in 31 European countries in the period from 2005 to 2020. With this aim, we considered eleven indicators describing the socio-economic national context and the level of innovation of the economies. Besides improving knowledge about the use of machine learning algorithms for the description of the NEET phenomenon, we discuss the connections between NEETs and other indicators that connect with other relevant sustainable development goals (SDGs), such as education, the reduction of inequalities, and decent work for everyone. The reduction of NEET rates is the only goal directly addressed to young people, The article underscores the need for evidence-based approaches to measure SDG achievement, especially concerning the heterogeneous NEET population. It emphasizes the importance of machine learning algorithms as a modern methodology for understanding and addressing the NEET phenomenon within the framework of SDGs, considering the complex interrelationships of socio-economic factors contributing to social and economic sustainability.
Keywords: Sustainability NEET; SDG; Machine learning algorithms (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012124001204
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:94:y:2024:i:c:s0038012124001204
DOI: 10.1016/j.seps.2024.101921
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().