EconPapers    
Economics at your fingertips  
 

Sustainable supply chain decision-making in the automotive industry: A data-driven approach

Hanieh Zareian Beinabadi, Vahid Baradaran and Alireza Rashidi Komijan

Socio-Economic Planning Sciences, 2024, vol. 95, issue C

Abstract: The auto parts manufacturing sector faces multifaceted challenges ranging from production planning to sustainability imperatives, necessitating innovative solutions. This study presents an integrated data-driven approach tailored to address these challenges. Leveraging advanced AI techniques, including Convolutional and Recurrent Neural Networks optimized with the Moth-flame Optimization Algorithm (MFO), we accurately predict demand quantities for automotive components. Through empirical validation with Iranian auto parts manufacturers, our model achieves an impressive accuracy rate of over 90 %. Subsequently, Data Envelopment Analysis (DEA) evaluates suppliers not only based on demand quantities but also on their social, economic, and environmental impacts, with a resulting average efficiency score of 0.75. The Best-Worst Method (BWM) further refines supplier selection, leading to the identification of top-performing suppliers with an average score of 0.8. This comprehensive approach enables auto parts manufacturers to optimize production planning processes while aligning with sustainable development goals. The successful application of our model underscores the transformative potential of integrating business analytics and AI in the automotive industry towards sustainability.

Keywords: Artificial intelligence (AI); Sustainable development; Automobile industry; Data envelopment analysis (DEA); Optimized hybrid neural networks; Data driven decision making (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012124001071
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124001071

DOI: 10.1016/j.seps.2024.101908

Access Statistics for this article

Socio-Economic Planning Sciences is currently edited by Barnett R. Parker

More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124001071