Geographic and demographic correlates of autism-related anti-vaccine beliefs on Twitter, 2009-15
Theodore S. Tomeny,
Christopher J. Vargo and
Sherine El-Toukhy
Social Science & Medicine, 2017, vol. 191, issue C, 168-175
Abstract:
This study examines temporal trends, geographic distribution, and demographic correlates of anti-vaccine beliefs on Twitter, 2009–2015. A total of 549,972 tweets were downloaded and coded for the presence of anti-vaccine beliefs through a machine learning algorithm. Tweets with self-disclosed geographic information were resolved and United States Census data were collected for corresponding areas at the micropolitan/metropolitan level. Trends in number of anti-vaccine tweets were examined at the national and state levels over time. A least absolute shrinkage and selection operator regression model was used to determine census variables that were correlated with anti-vaccination tweet volume. Fifty percent of our sample of 549,972 tweets collected between 2009 and 2015 contained anti-vaccine beliefs. Anti-vaccine tweet volume increased after vaccine-related news coverage. California, Connecticut, Massachusetts, New York, and Pennsylvania had anti-vaccination tweet volume that deviated from the national average. Demographic characteristics explained 67% of variance in geographic clustering of anti-vaccine tweets, which were associated with a larger population and higher concentrations of women who recently gave birth, households with high income levels, men aged 40 to 44, and men with minimal college education. Monitoring anti-vaccination beliefs on Twitter can uncover vaccine-related concerns and misconceptions, serve as an indicator of shifts in public opinion, and equip pediatricians to refute anti-vaccine arguments. Real-time interventions are needed to counter anti-vaccination beliefs online. Identifying clusters of anti-vaccination beliefs can help public health professionals disseminate targeted/tailored interventions to geographic locations and demographic sectors of the population.
Keywords: Autism spectrum disorder; Beliefs; Big data; Machine learning algorithms; Social media; Twitter; Vaccines (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0277953617305221
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:socmed:v:191:y:2017:i:c:p:168-175
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
http://www.elsevier. ... _01_ooc_1&version=01
DOI: 10.1016/j.socscimed.2017.08.041
Access Statistics for this article
Social Science & Medicine is currently edited by Ichiro (I.) Kawachi and S.V. (S.V.) Subramanian
More articles in Social Science & Medicine from Elsevier
Bibliographic data for series maintained by Catherine Liu ().