EconPapers    
Economics at your fingertips  
 

Predicting women's height from their socioeconomic status: A machine learning approach

Adel Daoud, Rockli Kim and S.V. Subramanian

Social Science & Medicine, 2019, vol. 238, issue C, -

Abstract: The social determinants of health literature routinely deploy socio-economic status (SES) as a key factor in accounting for women's height—an established indicator of human welfare at the population level—using traditional regression. However, this literature lacks a systematic identification of the predictive power of SES as well as the possible non-linear relationships between the measures of SES (education, occupation, and material wealth) in predicting variation in women's height. This study aims to evaluate this predictive power. We used the Demographic and Health Surveys (DHS) from 66 low- and middle-income countries (women = 1,273,644), sampled between 1994 and 2016. The analysis consisted of training seven machine-learning algorithms of different function classes and assessing their predictive power out-of-sample, vis-à-vis OLS regression. In an OLS framework, SES accounts for 0.7%, R2, of the total variance in women's height (from σOLSFix2 = 31.82 to σOLSSES2 = 31.57), adjusting for country, community, and sampling year fixed effects. The country-specific variances range from as low as 25.10 units in Egypt to as high as 74.46 units in Sao Tome and Principe. With the same set of SES measures, the best performing learner, a Bayesian neural net, produces a predictive variance of σBnnSES2 = 31.52. This is a negligible improvement in variance explained by 0.3% (σBnnSES2−σOLSSES2). Given our selection of algorithms, our findings indicate no relevant non-linear relationships between SES and women's height, and also the predictive limits of SES. We recommend that scholars report both the average effect of SES on health outcomes as well as its contribution to the variance explained. This will improve our understanding of how key social and economic factors affect health, deepening our understanding of the social determinants of health.

Keywords: Social class; Socio-economic status; Global health; Social determinants of health; Health inequality; Women's height; Machine learning; Prediction (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0277953619304794
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:socmed:v:238:y:2019:i:c:3

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
http://www.elsevier. ... _01_ooc_1&version=01

Access Statistics for this article

Social Science & Medicine is currently edited by Ichiro (I.) Kawachi and S.V. (S.V.) Subramanian

More articles in Social Science & Medicine from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-12-07
Handle: RePEc:eee:socmed:v:238:y:2019:i:c:3