EconPapers    
Economics at your fingertips  
 

Spatiotemporal trends and influence factors of global diabetes prevalence in recent years

Junming Li, Sixian Wang, Xiulan Han, Gehong Zhang, Min Zhao and Ling Ma

Social Science & Medicine, 2020, vol. 256, issue C

Abstract: Diabetes is one of the most widespread global epidemics and has become the main component of the global disease burden. Based on data regarding the prevalence of diabetes in 203 countries and territories from 2013 to 2017, we employed the Bayesian space-time model to investigate the spatiotemporal trends in the global diabetes prevalence. The factors influencing the diabetes prevalence were assessed by the Bayesian LASSO regression model. We identified 77 (37.9%) hotspots with a higher diabetes prevalence than the global average, 10 (0.4%) warm spots with global average level and 116 (57.1%) cold spots with lower level than global average. Of the 203 countries and territories, 68 (33.5%), including 31 hotspots, 5 warm spots and 32 cold spots, exhibited an increasing trend. Of these, 60 experienced an annual increase of more than 0.25%, and 8 showed an increasing trend. Three populous countries, namely China, the USA and Mexico, exhibited a high prevalence and an increasing trend simultaneously. Three socioeconomic factors, body mass index (BMI), urbanization rate (UR) and gross domestic product per capita (GDP-PC), and PM2.5 pollution were found to significantly influence the prevalence of diabetes. BMI was the strongest factor; for every 1% increase in BMI, the prevalence of diabetes increased by 2.371% (95% confidence interval (95% CI): 0.957%, 3.890%) in 2013 and by 3.045% (95% CI: 1.803%, 4.397%) in 2015 and 2017. PM2.5 pollution could be a risk factor, and its influencing magnitude gradually increased as well. With an annual PM2.5 concentrations increase of 1.0% in a country, the prevalence of diabetes increased by 0.196% (95% CI: 0.020%, 0.356%). The UR, on the other hand, was found to be inversely associated with the prevalence of diabetes; with each UR increase of 1%, the prevalence of diabetes decreased by 0.006% (95% CI: 0.001%, 0.011%).

Keywords: Global diabetes prevalence; Bayesian space-time model; Bayesian LASSO regression; Spatiotemporal trends; Influence factors (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0277953620302811
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:socmed:v:256:y:2020:i:c:s0277953620302811

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
http://www.elsevier. ... _01_ooc_1&version=01

DOI: 10.1016/j.socscimed.2020.113062

Access Statistics for this article

Social Science & Medicine is currently edited by Ichiro (I.) Kawachi and S.V. (S.V.) Subramanian

More articles in Social Science & Medicine from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:socmed:v:256:y:2020:i:c:s0277953620302811