EconPapers    
Economics at your fingertips  
 

Health behavior homophily can mitigate the spread of infectious diseases in small-world networks

Hendrik Nunner, Vincent Buskens, Alexandra Teslya and Mirjam Kretzschmar

Social Science & Medicine, 2022, vol. 312, issue C

Abstract: Research has repeatedly shown that the spread of infectious diseases is influenced by properties of our social networks. Small-world like structures with densely connected clusters bridged by only a few connections, for example, are not only known to diminish disease spread, but also to increase the chance for a disease to spread to any part of the network. Clusters composed of individuals who show similar reactions to avoid infections (health behavior homophily), however, might change the effect of such clusters on disease spread. To study the combined effect of health behavior homophily and small-world network properties on disease spread, we extend a previously developed ego-centered network formation model and agent-based simulation. Based on more than 80,000 simulated epidemics on generated networks varying in clustering and homophily, as well as diseases varying in severity and infectivity, we predict that the existence of health behavior homophilous clusters reduce the number of infections, lower peak size, and flatten the curve of active cases. That is because agents perceiving higher risks of infections can protect their cluster from infections comparatively quickly by severing only a few bridging ties. A comparison with epidemics in static network structures shows that the incapability to act upon risk perceptions and the low connectivity between clusters in static networks lead to diametrically opposed effects with comparatively large epidemics and prolonged epidemics. These finding suggest that micro-level behavioral adaptation to health risks mitigate macro-level disease spread to an extent that is not captured by static network models of disease spread. Furthermore, this mechanism can be used to design information campaigns targeting proxies for groups with lower risk perception.

Keywords: Small-world networks; Adaptive networks; Homophily; Health behavior; Risk perception; Infectious diseases; Epidemics; Agent-based simulations (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0277953622006566
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:socmed:v:312:y:2022:i:c:s0277953622006566

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
http://www.elsevier. ... _01_ooc_1&version=01

DOI: 10.1016/j.socscimed.2022.115350

Access Statistics for this article

Social Science & Medicine is currently edited by Ichiro (I.) Kawachi and S.V. (S.V.) Subramanian

More articles in Social Science & Medicine from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:socmed:v:312:y:2022:i:c:s0277953622006566