Using quantile regression to examine the effects of inequality across the mortality distribution in the U.S. counties
Tse-Chuan Yang,
Vivian Yi-Ju Chen,
Carla Shoff and
Stephen A. Matthews
Social Science & Medicine, 2012, vol. 74, issue 12, 1900-1910
Abstract:
The U.S. has experienced a resurgence of income inequality in the past decades. The evidence regarding the mortality implications of this phenomenon has been mixed. This study employs a rarely used method in mortality research, quantile regression (QR), to provide insight into the ongoing debate of whether income inequality is a determinant of mortality and to investigate the varying relationship between inequality and mortality throughout the mortality distribution. Analyzing a U.S. dataset where the five-year (1998–2002) average mortality rates were combined with other county-level covariates, we found that the association between inequality and mortality was not constant throughout the mortality distribution and the impact of inequality on mortality steadily increased until the 80th percentile. When accounting for all potential confounders, inequality was significantly and positively related to mortality; however, this inequality–mortality relationship did not hold across the mortality distribution. A series of Wald tests confirmed this varying inequality–mortality relationship, especially between the lower and upper tails. The large variation in the estimated coefficients of the Gini index suggested that inequality had the greatest influence on those counties with a mortality rate of roughly 9.95 deaths per 1000 population (80th percentile) compared to any other counties. Furthermore, our results suggest that the traditional analytic methods that focus on mean or median value of the dependent variable can be, at most, applied to a narrow 20 percent of observations. This study demonstrates the value of QR. Our findings provide some insight as to why the existing evidence for the inequality–mortality relationship is mixed and suggest that analytical issues may play a role in clarifying whether inequality is a robust determinant of population health.
Keywords: Quantile regression; Income inequality; Mortality; County; USA (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0277953612002031
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:socmed:v:74:y:2012:i:12:p:1900-1910
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
http://www.elsevier. ... _01_ooc_1&version=01
DOI: 10.1016/j.socscimed.2012.02.029
Access Statistics for this article
Social Science & Medicine is currently edited by Ichiro (I.) Kawachi and S.V. (S.V.) Subramanian
More articles in Social Science & Medicine from Elsevier
Bibliographic data for series maintained by Catherine Liu ().