Conditioned stochastic differential equations: theory, examples and application to finance
Fabrice Baudoin
Stochastic Processes and their Applications, vol. 100, issue 1-2, 109-145
Abstract:
We generalize the notion of Brownian bridge. More precisely, we study a standard Brownian motion for which a certain functional is conditioned to follow a given law. Such processes appear as weak solutions of stochastic differential equations that we call conditioned stochastic differential equations. The link with the theory of initial enlargement of filtration is made and after a general presentation several examples are studied: the conditioning of a standard Brownian motion (and more generally of a Markov diffusion) by its value at a given date, the conditioning of a geometric Brownian motion with negative drift by its quadratic variation and finally the conditioning of a standard Brownian motion by its first hitting time of a given level. As an application, we introduce the notion of weak information on a complete market, and we give a "quantitative" value to this weak information.
Keywords: Brownian; bridge; Conditioning; Initial; enlargement; of; filtration; Exponential; generalization; of; Pitman's; 2M-X; theorem; Filtering; Portfolio; optimization (search for similar items in EconPapers)
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00109-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:100:y::i:1-2:p:109-145
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().