A stochastic maximum principle for processes driven by fractional Brownian motion
Francesca Biagini,
Yaozhong Hu,
Bernt Øksendal and
Agnès Sulem
Stochastic Processes and their Applications, vol. 100, issue 1-2, 233-253
Abstract:
We prove a stochastic maximum principle for controlled processes X(t)=X(u)(t) of the formdX(t)=b(t,X(t),u(t)) dt+[sigma](t,X(t),u(t)) dB(H)(t),where B(H)(t) is m-dimensional fractional Brownian motion with Hurst parameter . As an application we solve a problem about minimal variance hedging in an incomplete market driven by fractional Brownian motion.
Keywords: Stochastic; maximum; principle; Stochastic; control; Fractional; Brownian; motion (search for similar items in EconPapers)
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00105-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:100:y::i:1-2:p:233-253
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().