EconPapers    
Economics at your fingertips  
 

On sequential estimation for branching processes with immigration

Yongcheng Qi and Jaxk Reeves

Stochastic Processes and their Applications, vol. 100, issue 1-2, 41-51

Abstract: Consider a Galton-Watson process with immigration. The limiting distributions of the nonsequential estimators of the offspring mean have been proved to be drastically different for the critical case and subcritical and supercritical cases. A sequential estimator, proposed by Sriram et al. (Ann. Statist. 19 (1991) 2232), was shown to be asymptotically normal for both the subcritical and critical cases. Based on a certain stopping rule, we construct a class of two-stage estimators for the offspring mean. These estimators are shown to be asymptotically normal for all the three cases. This gives, without assuming any prior knowledge, a unified estimation and inference procedure for the offspring mean.

Keywords: Two-stage; sequential; estimator; Stopping; time; Asymptotic; normality; Branching; process (search for similar items in EconPapers)
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00120-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:100:y::i:1-2:p:41-51

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:100:y::i:1-2:p:41-51