EconPapers    
Economics at your fingertips  
 

Almost sure exponential behaviour for a parabolic SPDE on a manifold

Samy Tindel and Frederi Viens

Stochastic Processes and their Applications, vol. 100, issue 1-2, 53-74

Abstract: We derive an upper bound on the large-time exponential behavior of the solution to a stochastic partial differential equation on a compact manifold with multiplicative noise potential. The potential is a random field that is white-noise in time, and Hölder-continuous in space. The stochastic PDE is interpreted in its evolution (semigroup) sense. A Feynman-Kac formula is derived for the solution, which is an expectation of an exponential functional of Brownian paths on the manifold. The main analytic technique is to discretize the Brownian paths, replacing them by piecewise-constant paths. The error committed by this replacement is controlled using Gaussian regularity estimates; these are also invoked to calculate the exponential rate of increase for the discretized Feynman-Kac formula. The error is proved to be negligible if the diffusion coefficient in the stochastic PDE is small enough. The main result extends a bound of Carmona and Viens (Stochast. Stochast. Rep. 62 (3-4) (1998) 251) beyond flat space to the case of a manifold.

Keywords: Parabolic; stochastic; partial; differential; equations; Feynman-Kac; formula; Lyapunov; exponent; Gaussian; estimates (search for similar items in EconPapers)
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00102-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:100:y::i:1-2:p:53-74

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:100:y::i:1-2:p:53-74