Simulation of stochastic integrals with respect to Lévy processes of type G
Magnus Wiktorsson
Stochastic Processes and their Applications, 2002, vol. 101, issue 1, 113-125
Abstract:
We study the simulation of stochastic processes defined as stochastic integrals with respect to type G Lévy processes for the case where it is not possible to simulate the type G process exactly. The type G Lévy process as well as the stochastic integral can on compact intervals be represented as an infinite series. In a practical simulation we must truncate this representation. We examine the approximation of the remaining terms with a simpler process to get an approximation of the stochastic integral. We also show that a stochastic time change representation can be used to obtain an approximation of stochastic integrals with respect to type G Lévy processes provided that the integrator and the integrand are independent.
Keywords: Type; G; distribution; Stochastic; integral; Variance; mixture; Lévy; process; Shot; noise; representation; Stochastic; time; change; Subordination (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00123-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:101:y:2002:i:1:p:113-125
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().