EconPapers    
Economics at your fingertips  
 

Error analysis of the optimal quantization algorithm for obstacle problems

Vlad Bally and Gilles Pagès

Stochastic Processes and their Applications, 2003, vol. 106, issue 1, 1-40

Abstract: In the paper Bally and Pagès (2000) an algorithm based on an optimal discrete quantization tree is designed to compute the solution of multi-dimensional obstacle problems for homogeneous -valued Markov chains (Xk)0[less-than-or-equals, slant]k[less-than-or-equals, slant]n. This tree is made up with the (optimal) quantization grids of every Xk. Then a dynamic programming formula is naturally designed on it. The pricing of multi-asset American style vanilla options is a typical example of such problems. The first part of this paper is devoted to the analysis of the Lp-error induced by the quantization procedure. A second part deals with the analysis of the statistical error induced by the Monte Carlo estimation of the transition weights of the quantization tree.

Keywords: Numerical; probability; Optimal; stopping; Snell; envelope; Optimal; quantization; of; random; variables; Reflected; backward; stochastic; differential; equation; American; option; pricing (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00026-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:106:y:2003:i:1:p:1-40

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:106:y:2003:i:1:p:1-40