A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudo-mixing signals
François LeGland and
Nadia Oudjane
Stochastic Processes and their Applications, 2003, vol. 106, issue 2, 279-316
Abstract:
We propose a new approach to study the stability of the optimal filter w.r.t. its initial condition, by introducing a "robust" filter, which is exponentially stable and which approximates the optimal filter uniformly in time. The "robust" filter is obtained here by truncation of the likelihood function, and the robustification result is proved under the assumption that the Markov transition kernel satisfies a pseudo-mixing condition (weaker than the usual mixing condition), and that the observations are "sufficiently good". This robustification approach allows us to prove also the uniform convergence of several particle approximations to the optimal filter, in some cases of nonergodic signals.
Keywords: Nonlinear; filter; Particle; filter; Stability; Hilbert; metric; Mixing; Pseudo-mixing; Robustification (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00041-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:106:y:2003:i:2:p:279-316
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().