Asymptotic behavior of the local score of independent and identically distributed random sequences
Jean-Jacques Daudin,
Marie Pierre Etienne and
Pierre Vallois
Stochastic Processes and their Applications, 2003, vol. 107, issue 1, 1-28
Abstract:
Let (Xn)n[greater-or-equal, slanted]1 be a sequence of real random variables. The local score is Hn=max1[less-than-or-equals, slant]i +[infinity], where B1*=max0[less-than-or-equals, slant]u[less-than-or-equals, slant]1 Bu and (Bu,u[greater-or-equal, slanted]0) is a standard Brownian motion, B0=0. If (Xn)n[greater-or-equal, slanted]1 a sequence of i.i.d. random variables, and Var(X1)=[sigma]2>0, we prove the convergence of to [sigma][xi][delta]/[sigma] where [xi][gamma]=max0[less-than-or-equals, slant]u[less-than-or-equals, slant]1 {(B(u)+[gamma]u)-min0[less-than-or-equals, slant]s[less-than-or-equals, slant]u(B(s)+[gamma]s)}. We approximate the probability distribution function of [xi][gamma] and we determine the asymptotic behavior of P([xi][gamma][greater-or-equal, slanted]a), a-->+[infinity].
Keywords: Brownian; motion; with; drift; Local; score (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00061-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:107:y:2003:i:1:p:1-28
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().