EconPapers    
Economics at your fingertips  
 

Optimal lifetime consumption-portfolio strategies under trading constraints and generalized recursive preferences

Mark Schroder and Costis Skiadas

Stochastic Processes and their Applications, 2003, vol. 108, issue 2, 155-202

Abstract: We consider the lifetime consumption-portfolio problem in a competitive securities market with essentially arbitrary continuous price dynamics, and convex trading constraints (e.g., incomplete markets and short-sale constraints). Abstract first-order conditions of optimality are derived, based on a preference-independent notion of constrained state pricing. For homothetic generalized recursive utility, we derive closed-form solutions for the optimal consumption and trading strategy in terms of the solution to a single constrained BSDE. Incomplete market solutions are related to complete markets solutions with modified risk aversion towards non-marketed risk. Methodologically, we develop the utility gradient approach, but for the homothetic case we also verify the solution using the dynamic programming approach, without having to assume a Markovian structure. Finally, we present a class of parametric examples in which the BSDE characterizing the solution reduces to a system of Riccati equations.

Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00128-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:108:y:2003:i:2:p:155-202

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:108:y:2003:i:2:p:155-202