A class of stochastic optimal control problems in Hilbert spaces: BSDEs and optimal control laws, state constraints, conditioned processes
Marco Fuhrman
Stochastic Processes and their Applications, 2003, vol. 108, issue 2, 263-298
Abstract:
We consider a nonlinear controlled stochastic evolution equation in a Hilbert space, with a Wiener process affecting the control, assuming Lipschitz conditions on the coefficients. We take a cost functional quadratic in the control term, but otherwise with general coefficients that may even take infinite values. Under a mild finiteness condition, and after appropriate formulation, we prove existence and uniqueness of the optimal control. We construct the optimal feedback law by means of an associated backward stochastic differential equation. In this Hilbert space setting we are able to treat some state constraints and in some cases to recover conditioned processes as optimal trajectories of appropriate optimal control problems. Applications to optimal control of stochastic partial differential equations are also given.
Keywords: Stochastic; optimal; control; Forward-backward; stochastic; differential; equations (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00129-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:108:y:2003:i:2:p:263-298
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().