Time to absorption in discounted reinforcement models
Robin Pemantle and
Brian Skyrms
Stochastic Processes and their Applications, 2004, vol. 109, issue 1, 1-12
Abstract:
Reinforcement schemes are a class of non-Markovian stochastic processes. Their non-Markovian nature allows them to model some kind of memory of the past. One subclass of such models are those in which the past is exponentially discounted or forgotten. Often, models in this subclass have the property of becoming trapped with probability 1 in some degenerate state. While previous work has concentrated on such limit results, we concentrate here on a contrary effect, namely that the time to become trapped may increase exponentially in 1/x as the discount rate, 1-x, approaches 1. As a result, the time to become trapped may easily exceed the lifetime of the simulation or of the physical data being modeled. In such a case, the quasi-stationary behavior is more germane. We apply our results to a model of social network formation based on ternary (three-person) interactions with uniform positive reinforcement.
Keywords: Network; Social; network; Urn; model; Friedman; urn; Stochastic; approximation; Meta-stable; Trap; Three-player; game; Potential; well; Exponential; time; Quasi-stationary (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00132-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:109:y:2004:i:1:p:1-12
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().