Local empirical spectral measure of multivariate processes with long range dependence
Morten Nielsen
Stochastic Processes and their Applications, 2004, vol. 109, issue 1, 145-166
Abstract:
We derive a functional central limit theorem for the empirical spectral measure or discretely averaged (integrated) periodogram of a multivariate long range dependent stochastic process in a degenerating neighborhood of the origin. We show that, under certain restrictions on the memory parameters, this local empirical spectral measure converges weakly to a Gaussian process with independent increments. Applications to narrow-band frequency domain estimation in time series regression with long range dependence, and to local (to the origin) goodness-of-fit testing are offered.
Keywords: Brownian; motion; Fractional; ARIMA; Functional; central; limit; theorem; Goodness-of-fit; test; Integrated; periodogram; Long; memory; Narrow-band; frequency; domain; least; squares (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00135-2
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Local Empirical Spectral Measure of Multivariate Processes with Long Range Dependence 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:109:y:2004:i:1:p:145-166
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().