EconPapers    
Economics at your fingertips  
 

Random integral representation of operator-semi-self-similar processes with independent increments

Peter Becker-Kern

Stochastic Processes and their Applications, 2004, vol. 109, issue 2, 327-344

Abstract: Jeanblanc et al. (Stochastic Process. Appl. 100 (2002) 223) give a representation of self-similar processes with independent increments by stochastic integrals with respect to background driving Lévy processes. Via Lamperti's transformation these processes correspond to stationary Ornstein-Uhlenbeck processes. In the present paper we generalize the integral representation to multivariate processes with independent increments having the weaker scaling property of operator-semi-self-similarity. It turns out that the corresponding background driving process has periodically stationary increments and in general is no longer a Lévy process. Just as well it turns out that the Lamperti transform of an operator-semi-self-similar process with independent increments defines a periodically stationary process of Ornstein-Uhlenbeck type.

Keywords: Operator-semi-self-similar; process; Operator-semi-self-decomposable; distribution; Semi-stable; hemigroup; Periodic; stationarity; Background; driving; process; Generalized; Ornstein-Uhlenbeck; process; Operator; Lévy; bridge (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00147-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:109:y:2004:i:2:p:327-344

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:109:y:2004:i:2:p:327-344