Hydrodynamic limit for a Fleming-Viot type system
Ilie Grigorescu and
Min Kang
Stochastic Processes and their Applications, 2004, vol. 110, issue 1, 111-143
Abstract:
We consider a system of N Brownian particles evolving independently in a domain D. As soon as one particle reaches the boundary it is killed and one of the other particles is chosen uniformly and splits into two independent particles resuming a new cycle of independent motion until the next boundary hit. We prove the hydrodynamic limit for the joint law of the empirical measure process and the average number of visits to the boundary as N approaches infinity.
Keywords: Fleming-Viot; Hydrodynamic; limit; Catalytic; branching; Absorbing; Brownian; motion (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00171-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:110:y:2004:i:1:p:111-143
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().