EconPapers    
Economics at your fingertips  
 

Hydrodynamic limit for a Fleming-Viot type system

Ilie Grigorescu and Min Kang

Stochastic Processes and their Applications, 2004, vol. 110, issue 1, 111-143

Abstract: We consider a system of N Brownian particles evolving independently in a domain D. As soon as one particle reaches the boundary it is killed and one of the other particles is chosen uniformly and splits into two independent particles resuming a new cycle of independent motion until the next boundary hit. We prove the hydrodynamic limit for the joint law of the empirical measure process and the average number of visits to the boundary as N approaches infinity.

Keywords: Fleming-Viot; Hydrodynamic; limit; Catalytic; branching; Absorbing; Brownian; motion (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00171-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:110:y:2004:i:1:p:111-143

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:110:y:2004:i:1:p:111-143