Ruin probabilities for a risk process with stochastic return on investments
Kam C. Yuen,
Guojing Wang and
Kai W. Ng
Stochastic Processes and their Applications, 2004, vol. 110, issue 2, 259-274
Abstract:
In this paper, we consider a risk process with stochastic return on investments. The basic risk process is the classical risk process while the return on the investment generating process is a compound Poisson process plus a Brownian motion with positive drift. We obtain an integral equation for the ultimate ruin probability which is twice continuously differentiable under certain conditions. We then derive explicit expressions for the lower bound for the ruin probability. We also study a joint distribution related to exponential functionals of Brownian motion which is required in the derivations of the explicit expressions for the lower bound.
Keywords: Integral; equation; Risk; process; Ruin; probability; Stochastic; return; Survival; probability (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00168-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:110:y:2004:i:2:p:259-274
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().