A new multivariate transform and the distribution of a random functional of a Ferguson-Dirichlet process
Thomas J. Jiang,
James M. Dickey and
Kun-Lin Kuo
Stochastic Processes and their Applications, 2004, vol. 111, issue 1, 77-95
Abstract:
A new multivariate transformation is given, with various properties, e.g., uniqueness and convergence properties, that are similar to those of the Fourier transformation. The new transformation is particularly useful for distributions that are difficult to deal with by Fourier transformation, such as relatives of the Dirichlet distributions. The new multivariate transformation of the Dirichlet distribution can be expressed in closed form. With this result, we easily show that the marginal of a Dirichlet distribution is still a Dirichlet distribution. We also give a closed form for the filtered-variate Dirichlet distribution. A relation between the new characteristic function and the traditional characteristic function is given. Using this multivariate transformation, we give the distribution, on the region bounded by an ellipse, of a random functional of a Ferguson-Dirichlet process over the boundary.
Keywords: Multivariate; c-characteristic; function; Fourier; transformation; Dirichlet; distribution; Ferguson-Dirichlet; process; random; functional; Carlson's; function; Filtered-variate; Dirichlet; distribution; Inversion; formula (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00181-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:111:y:2004:i:1:p:77-95
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().