EconPapers    
Economics at your fingertips  
 

Best choice from the planar Poisson process

A.V.Alexander V. Gnedin

Stochastic Processes and their Applications, 2004, vol. 111, issue 2, 317-354

Abstract: Various best-choice problems related to the planar homogeneous Poisson process in a finite or semi-infinite rectangle are studied. The analysis is largely based on the properties of the one-dimensional box-area process associated with the sequence of records. We prove a series of distributional identities involving exponential and uniform random variables, and give a resolution to the Petruccelli-Porosinski-Samuels paradox on the coincidence of asymptotic values in certain discrete-time optimal stopping problems.

Keywords: Optimal; stopping; Best-choice; problem; Planar; Poisson; process; Records (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00002-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:111:y:2004:i:2:p:317-354

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:111:y:2004:i:2:p:317-354