EconPapers    
Economics at your fingertips  
 

Further scaling exponents of random walks in random sceneries

Didier Piau

Stochastic Processes and their Applications, 2004, vol. 112, issue 1, 145-155

Abstract: Completing previous results, we construct, for every , explicit examples of nearest neighbour random walks on the nonnegative integer line such that s is the scaling exponent of the associated random walk in random scenery for square integrable i.i.d. sceneries. We use coupling techniques to compare the distributions of the local times of such random walks.

Keywords: Random; walks; in; random; scenery; Self-similar; processes (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00022-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:112:y:2004:i:1:p:145-155

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:112:y:2004:i:1:p:145-155