Ruin probabilities and penalty functions with stochastic rates of interest
Jun Cai
Stochastic Processes and their Applications, 2004, vol. 112, issue 1, 53-78
Abstract:
Assume that a compound Poisson surplus process is invested in a stochastic interest process which is assumed to be a Lévy process. We derive recursive and integral equations for ruin probabilities with such an investment. Lower and upper bounds for the ultimate ruin probability are obtained from these equations. When the interest process is a Brownian motion with drift, we give a unified treatment to ruin quantities by studying the expected discounted penalty function associated with the time of ruin. An integral equation for the penalty function is given. Smooth properties of the penalty function are discussed based on the integral equation. Errors in a known result about the smooth properties of the ruin probabilities are corrected. Using a differential argument and moments of exponential functionals of Brownian motions, we derive an integro-differential equation satisfied by the penalty function. Applications of the integro-differential equation are given to the Laplace transform of the time of ruin, the deficit at ruin, the amount of claim causing ruin, etc. Some known results about ruin quantities are recovered from the generalized penalty function.
Keywords: Ruin; theory; Penalty; function; Stochastic; rates; of; interest; Integral; equation; Integro-differential; equation; Compound; Poisson; process; Lévy; process; Subordinator; Brownian; motion (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00017-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:112:y:2004:i:1:p:53-78
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().