On weak uniqueness for some diffusions with discontinuous coefficients
N. V. Krylov
Stochastic Processes and their Applications, 2004, vol. 113, issue 1, 37-64
Abstract:
Several situations when one can prove weak uniqueness of solutions of Itô equations with discontinuous or/and degenerate coefficients are presented. In particular, the cases are considered in which the set of discontinuity is a cone, or a straight line, or else a discrete set of points.
Keywords: Weak; uniqueness; Stochastic; Ito; equations; Second-order; elliptic; equations (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00060-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:113:y:2004:i:1:p:37-64
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().