Approximating the Reed-Frost epidemic process
A. D. Barbour and
Sergey Utev
Stochastic Processes and their Applications, 2004, vol. 113, issue 2, 173-197
Abstract:
The paper is concerned with refining two well-known approximations to the Reed-Frost epidemic process. The first is the branching process approximation in the early stages of the epidemic; we extend its range of validity, and sharpen the estimates of the error incurred. The second is the normal approximation to the distribution of the final size of a large epidemic, which we complement with a detailed local limit approximation. The latter, in particular, is relevant if the approximations are to be used for statistical inference.
Keywords: Reed-Frost; epidemic; process; Local; limit; approximation; Asymptotic; relative; closeness; Total; variation; Final; size; distribution; Branching; process; approximation (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00061-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:113:y:2004:i:2:p:173-197
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().