A coalescent model for the effect of advantageous mutations on the genealogy of a population
Rick Durrett and
Jason Schweinsberg
Stochastic Processes and their Applications, 2005, vol. 115, issue 10, 1628-1657
Abstract:
When an advantageous mutation occurs in a population, the favorable allele may spread to the entire population in a short time, an event known as a selective sweep. As a result, when we sample n individuals from a population and trace their ancestral lines backwards in time, many lineages may coalesce almost instantaneously at the time of a selective sweep. We show that as the population size goes to infinity, this process converges to a coalescent process called a coalescent with multiple collisions. A better approximation for finite populations can be obtained using a coalescent with simultaneous multiple collisions. We also show how these coalescent approximations can be used to get insight into how beneficial mutations affect the behavior of statistics that have been used to detect departures from the usual Kingman's coalescent.
Keywords: Coalescence; Selective; sweep; Genealogy; Tajima's; D-statistic (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00060-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:115:y:2005:i:10:p:1628-1657
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().