Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes
Alexander Lindner and
Ross Maller
Stochastic Processes and their Applications, 2005, vol. 115, issue 10, 1701-1722
Abstract:
The generalised Ornstein-Uhlenbeck process constructed from a bivariate Lévy process ([xi]t,[eta]t)t[greater-or-equal, slanted]0 is defined aswhere V0 is an independent starting random variable. The stationarity of the process is closely related to the convergence or divergence of the Lévy integral . We make precise this relation in the general case, showing that the conditions are not in general equivalent, though they are for example if [xi] and [eta] are independent. Characterisations are expressed in terms of the Lévy measure of ([xi],[eta]). Conditions for the moments of the strictly stationary distribution to be finite are given, and the autocovariance function and the heavy-tailed behaviour of the stationary solution are also studied.
Keywords: Generalised; Ornstein-Uhlenbeck; process; Lévy; integral; Stochastic; integral; Strict; stationarity; Autocovariance; function; Heavy-tailed; behaviour (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00066-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:115:y:2005:i:10:p:1701-1722
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().