A comonotonic theorem for BSDEs
Zengjing Chen,
Reg Kulperger and
Gang Wei
Stochastic Processes and their Applications, 2005, vol. 115, issue 1, 41-54
Abstract:
Pardoux and Peng (Systems Control Lett. 14 (1990) 55) introduced a class of nonlinear backward stochastic differential equations (BSDEs). According to Pardoux and Peng's theorem, the solution of this type of BSDE consists of a pair of adapted processes, say (y,z). Since then, many researchers have been exploring the properties of this pair solution (y,z), especially the properties of the first part y. In this paper, we shall explore the properties of the second part z. A comonotonic theorem with respect to z is obtained. As an application of this theorem, we prove an integral representation theorem of the solution of BSDEs.
Keywords: Backward; stochastic; differential; equation; (BSDE); Choquet; integral; Capacity; Partial; differential; equation; (PDE) (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00134-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:115:y:2005:i:1:p:41-54
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().