Dimension results for sample paths of operator stable Lévy processes
Mark M. Meerschaert and
Yimin Xiao
Stochastic Processes and their Applications, 2005, vol. 115, issue 1, 55-75
Abstract:
Let X= X(t),t[set membership, variant]R+ be an operator stable Lévy process in Rd with exponent B, where B is an invertible linear operator on Rd. We determine the Hausdorff dimension and the packing dimension of the range X([0,1]) in terms of the real parts of the eigenvalues of B.
Keywords: Lévy; processes; Operator; stable; processes; Range; Hausdorff; dimension; Packing; dimension (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00132-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:115:y:2005:i:1:p:55-75
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().