Extremal behavior of regularly varying stochastic processes
Henrik Hult and
Filip Lindskog
Stochastic Processes and their Applications, 2005, vol. 115, issue 2, 249-274
Abstract:
We study a formulation of regular variation for multivariate stochastic processes on the unit interval with sample paths that are almost surely right-continuous with left limits and we provide necessary and sufficient conditions for such stochastic processes to be regularly varying. A version of the Continuous Mapping Theorem is proved that enables the derivation of the tail behavior of rather general mappings of the regularly varying stochastic process. For a wide class of Markov processes with increments satisfying a condition of weak dependence in the tails we obtain simplified sufficient conditions for regular variation. For such processes we show that the possible regular variation limit measures concentrate on step functions with one step, from which we conclude that the extremal behavior of such processes is due to one big jump or an extreme starting point. By combining this result with the Continuous Mapping Theorem, we are able to give explicit results on the tail behavior of various vectors of functionals acting on such processes. Finally, using the Continuous Mapping Theorem we derive the tail behavior of filtered regularly varying Lévy processes.
Keywords: Regular; variation; Extreme; values; Functional; limit; theorem; Markov; processes (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00137-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:115:y:2005:i:2:p:249-274
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().