Sample path optimality for a Markov optimization problem
F.Y. Hunt
Stochastic Processes and their Applications, 2005, vol. 115, issue 5, 769-779
Abstract:
We study a unichain Markov decision process i.e. a controlled Markov process whose state process under a stationary policy is an ergodic Markov chain. Here the state and action spaces are assumed to be either finite or countable. When the state process is uniformly ergodic and the immediate cost is bounded then a policy that minimizes the long-term expected average cost also has an nth stage sample path cost that with probability one is asymptotically less than the nth stage sample path cost under any other non-optimal stationary policy with a larger expected average cost. This is a strengthening in the Markov model case of the a.s. asymptotically optimal property frequently discussed in the literature.
Keywords: Markov; decision; process; Stochastic; control; Azuma's; inequality (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00190-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:115:y:2005:i:5:p:769-779
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().